The OCL3 promoter from Sorghum bicolor directs gene expression to abscission and nutrient-transfer zones at the bases of floral organs.

نویسندگان

  • Krishna K Dwivedi
  • Dominique J Roche
  • Tom E Clemente
  • Zhengxiang Ge
  • John G Carman
چکیده

BACKGROUND AND AIMS During seed fill in cereals, nutrients are symplasmically unloaded to vascular parenchyma in ovules, but thereafter nutrient transport is less certain. In Zea mays, two mechanisms of nutrient passage through the chalaza and nucellus have been hypothesized, apoplasmic and symplasmic. In a recent study, nutrients first passed non-selectively to the chalazal apoplasm and were then selectively absorbed by the nucellus before being released to the endosperm apoplasm. This study reports that the promoter of OUTER CELL LAYER3 (PSbOCL3) from Sorghum bicolor (sorghum) directs gene expression to chalazal cells where the apoplasmic barrier is thought to form. The aims were to elucidate PSbOCL3 expression patterns in sorghum and relate them to processes of nutrient pathway development in kernels and to recognized functions of the homeodomain-leucine zipper (HD-Zip) IV transcription factor family to which the promoter belongs. METHODS PSbOCL3 was cloned and transformed into sorghum as a promoter-GUS (β-glucuronidase) construct. Plant tissues from control and transformed plants were then stained for GUS, and kernels were cleared and characterized using differential interference contrast microscopy. KEY RESULTS A symplasmic disconnect between the chalaza and nucellus during seed fill is inferred by the combination of two phenomena: differentiation of a distinct nucellar epidermis adjacent to the chalaza, and lysis of GUS-stained chalazal cells immediately proximal to the nucellar epidermis. Compression of the GUS-stained chalazal cells during kernel maturation produced the kernel abscission zone (closing layer). CONCLUSIONS The results suggest that the HD-Zip IV transcription factor SbOCL3 regulates kernel nutrition and abscission. The latter is consistent with evidence that members of this transcription factor group regulate silique abscission and dehiscence in Arabidopsis thaliana. Collectively, the findings suggest that processes of floral organ abscission are conserved among angiosperms and may in some respects differ from processes of leaf abscission.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of INFLORESCENCE DEFICIENT IN ABSCISSION activates cell separation in vestigial abscission zones in Arabidopsis.

Plants may shed organs when they have been injured or served their purpose. The differential pattern of organ abscission in different species is most likely the result of evolutionary adaptation to a variety of life styles and environments. The final step of abscission-related cell separation in floral organs of wild-type Arabidopsis thaliana, which only abscises sepals, petals, and stamens, is...

متن کامل

HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission.

Abcission, the natural shedding of leaves, flowers and fruits, is a fundamental component of plant development. Abscission is a highly regulated process that occurs at distinct zones of cells that undergo enlargement and subsequent separation. Although some components of abscission, including accumulation of the hormone ethylene and cell wall-degrading enzymes, have been described, the regulato...

متن کامل

The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis.

The Arabidopsis BLADE-ON-PETIOLE 1 (BOP1) and BOP2 genes encode redundant transcription factors that promote morphological asymmetry during leaf and floral development. Loss-of-function bop1 bop2 mutants display a range of developmental defects, including a loss of floral organ abscission. Abscission occurs along specialised cell files, called abscission zones (AZs) that develop at the junction...

متن کامل

Floral organ abscission is regulated by a positive feedback loop.

Abscission is the process by which plants shed unwanted organs, either as part of a natural developmental program or in response to environmental stimuli. Studies in Arabidopsis thaliana have elucidated a number of the genetic components that regulate abscission of floral organs, including a pair of related receptor-like protein kinases, HAESA and HAESA-like 2 (HAE/HSL2) that regulate a MAP kin...

متن کامل

Study of Gene Effects for Stalk Sugar Yield and Its Component Traits in Sweet Sorghum [Sorghum bicolor (L.) Moench] Using Generation Mean Analysis

Generation mean analysis was carried out to estimate the nature andmagnitude of gene effects for sugar yield and its component traits in sweet sorghum[Sorghum bicolor (L.) Moench. Six basic generations, namely P1, P2, F1, F2,BC1P1, BC1P2 of four crosses involving seven diverse parents were evaluated inrainy 2009. The mean performance of the F1 in all the crosses indicated dominantgene effect fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of botany

دوره 114 3  شماره 

صفحات  -

تاریخ انتشار 2014